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Abstract

This paper highlights the need to reduce the dimension of the feature space in classi®cation problems of high di-

mensions without sacri®cing the classi®cation power considerably. We propose a methodology for classi®cation tasks

which comprises three phases: (i) feature selection, (ii) automatic generation of fuzzy if±then rules and (iii) reduction of

the rule base while retaining its high classi®cation power. The ®rst phase is executed by using FeatureSelector, a

software developed solely for feature extraction in pattern recognition and classi®cation problems. This is for the ®rst

time that the FeatureSelector is used as a preprocessor for rule based classi®cation systems. In the second phase, a

standard fuzzy rule based classi®cation system is modi®ed and invoked with the most important features extracted by

the FeatureSelector as the new set of features. In the third phase, a modi®ed threshold accepting algorithm (MTA),

proposed elsewhere by the authors (Ravi et al., Fuzzy Sets and Systems, forthcoming) is used for minimizing the

number of rules in the classi®cation system while guaranteeing high classi®cation power. The number of rules used and

the classi®cation power are taken as the objectives for this multi objective combinatorial global optimization problem.

The methodology proposed here has been successfully demonstrated for two well-known problems (i) the wine clas-

si®cation problem, which includes 13 feature variables in its original form and (ii) the Wisconsin breast cancer de-

termination problem, which has 9 feature variables. In conclusion, the results are encouraging as there is no remarkable

reduction in the classi®cation power in both the problems, despite the fact that some features have been deleted from

the study by resorting to feature selection. Also, the MTA outperformed the original threshold accepting algorithm for

the test problems considered here. The authors suggest that classi®cation problems having higher feature dimensions

can be solved successfully within the framework of the methodology presented here. The high classi®cation powers

obtained for both the problems when working with less feature variables than the original number is the signi®cant

achievement of this study. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Among the earliest applications of fuzzy set
theory are knowledge based systems. The core of
such systems are fuzzy `if±then' rules. Most of
these systems derive these fuzzy `if±then' rules
from human experts [10]. Several methods have
been proposed to generate these fuzzy `if±then'
rules directly from numerical data. Kosko [15]
presented methods based on neural networks to
achieve this goal. Later, Ishibuchi et al. [10] came
out with a general purpose, easy-to-understand
methodology to generate such rules from the nu-
merical data and then they applied a genetic al-
gorithm to determine a compact rule set with a
high classi®cation power [11]. Some of the machine
learning based works which also generate the fuzzy
if±then rules are Yuan and Shaw [25], Ichihashi et
al. [13] and Yuan and Zhuang [26]. A version of
fuzzy-ID3 algorithm which induces fuzzy decision
trees is proposed in [25]. In [13], a neuro-fuzzy ID3
algorithm for inducing decision trees and incre-
mental learning is presented and Yuan and Zhu-
ang [26] propose a fuzzy genetic algorithm for
generating fuzzy classi®cation rules. Then MIT
GmbH, Aachen, Germany, started marketing a
software WINROSA [24] which uses statistical
methods to automatically generate fuzzy `if±then'
rules from numerical data. However, all the above
mentioned works di�er from that of [10,11] in
many ways.

In what follows, the partition of a pattern space
means its granularity. The generation of fuzzy if±
then rules from numerical data involves (i) the
fuzzy partition of a pattern space into fuzzy sub-
spaces and (ii) the determination of fuzzy if±then
rules for each fuzzy partition [10,11]. Next follows
the classi®cation phase, where either the training
data or the test data are classi®ed using the fuzzy
if±then rules generated. The performance of such a
classi®cation system depends on the choice of a
fuzzy partition. If a fuzzy partition is too coarse,
the performance may be low, because many pat-
terns may be misclassi®ed. On the other hand, if a
fuzzy partition is too ®ne, many fuzzy if±then rules
can't be generated due to the lack of training
patterns in the corresponding fuzzy subspaces.
Therefore, the choice of a fuzzy partition is very

important. In their earlier paper, Ishibuchi et al.
[10] have proposed distributed fuzzy rules, where
fuzzy rules corresponding to both coarse partitions
and ®ne partitions of a fuzzy subspace are taken
into account simultaneously. For example, a two-
dimensional pattern space gives rise to 90
(� 22 + 32 + 42 + 52 + 62) fuzzy if±then rules,
assuming that each pattern space is divided into 6
partitions at the most. Thus, they have considered
all 5 rule tables corresponding to all the partitions
simultaneously. Also by considering all the fuzzy
partitions simultaneously, the above mentioned
di�culty in choosing an appropriate partition is
circumvented.

The main drawback of this approach, however,
is that the number of fuzzy if±then rules becomes
enormous for classi®cation problems with high-
dimensional pattern spaces [12] such as the wine
classi®cation problem [9] which has 13 feature
variables. In such cases, the method proposed in
Refs. [10,11] cannot be applied straightaway, as it
would increase exponentially the total number of
rules from which an e�cient rule set is to be de-
rived. For example, if 5 partitions are used for
each of the 13 feature variables, the total number
of possible rules would become 213 + 313 +
413 + 513 @ 1.29 ´ 109. This is the case for the
distributed representation of fuzzy if±then rules.
Even if single rule tables were considered, for 5
partitions, the total number of possible rules
would become 513 @ 1.22 ´ 109. Thus the search
space becomes unmanageably large and ®nding a
compact rule set with high classi®cation power
from such a search space would consume enor-
mous amount of computational time and memory
as well. Thus it is sensible and logical to resort to a
mechanism by which the number of candidate
rules become less even for a problem whose feature
space dimension exceeds, say 5, with a reasonable
number of partitions. This drawback was ®rst
observed by Ishibuchi et al. [12] where they ob-
served that a problem with even 4 features and 6
partitions can exert considerable pressure on CPU
time and memory. To circumvent this problem,
Ishibuchi et al. [12] have proposed an improve-
ment to their original model and introduced a
method where the fuzzy if±then rules with a small
number of antecedent conditions are generated as
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candidate rules. They observed that their proposed
way of reducing the number of candidate rules
works well.

However, the authors are of the opinion that it
is still not a complete remedy because it is not
di�cult to ®nd problems where rules with small
number of antecedent conditions are intractable.
The authors also feel that there is a paramount
aspect viz., feature selection inherent in this kind
of problems which needs to be addressed appro-
priately. This calls for the development of other
alternative methods.

Thus it is meaningful to look for any unim-
portant features and remove them from the clas-
si®cation process much before the fuzzy if±then
rules generation phase starts. This results in re-
duced computational time and memory require-
ment and a viable classi®cation system with
manageable number of features. Thus feature se-
lection is an important component of classi®cation
algorithms specially in dealing with problems
having a large number of features. To achieve this
objective, in this paper, FeatureSelector, a software
developed by Strackeljan et al. [22,23], was used as
a preprocessor. It is for the ®rst time that the
FeatureSelector is used in fuzzy rule based classi-
®cation systems. It ®lters the unimportant features
and gives the best combinations of features in a
decreasing order of classi®cation power. Once
feature selection phase is over, the fuzzy if±then
rule generation phase takes over, where the model
of Ishibuchi et al. [11] is modi®ed slightly and
used. The ®nal phase is the formulation and so-
lution of a multi-objective combinatorial global
optimization problem with the classi®cation power
and the number of rules as the objectives. A MTA
proposed elsewhere by the authors [21] is used to
solve this problem.

The structure of the paper is as follows. Sec-
tion 2 contains an overview of the FeatureSelector
software. Section 3 presents brie¯y the fuzzy
classi®cation system and Section 4 formulates the
multi-objective combinatorial global optimization
problem and then describes, in detail, the MTA
giving the ¯owchart. Section 5 presents the details
of the numerical examples solved and then dis-
cusses the results obtained and Section 6 concludes
the paper.

2. FeatureSelector ± An overview

That feature selection is a quintessential com-
ponent of classi®cation tasks has been recognised
as early as 1973, when Kittler and Young [14]
surveyed the then existing feature selection proce-
dures and proposed a new feature selection algo-
rithm based on Karhunen±Loeve expansion. Then
Chang [6] applied dynamic programming to this
problem. The most recent work is that of Bradley
et al. [4] who proposed a linear programming
formulation of the feature selection problem.
These are only a few of the existing feature selec-
tion algorithms. The FeatureSelector, which is a
plug-in for the commercial software on soft com-
puting and intelligent data analysis, Data-Engine
[7], has its roots in fuzzy logic. As the name sug-
gests, it selects the signi®cant features and acts as a
pre-processor for the classi®cation problems with
very high feature dimensions. For instance, the
acoustic analysis of vibration signals in the time
and frequency domain generates a large number of
features and makes the reduction of the dimensi-
onality an absolute necessity [22,23]. Until now the
testing and diagnostic tasks have not been satis-
factorily automated because after the completion
of the learning phase de®ning a set of features is
necessary which describes the pattern as unam-
biguously as possible. In such cases, an expert es-
tablishes the features by ®ltering the data.
Automation of feature selection requires measures
of quality, based on which the respective combi-
nation of features can be examined for suitability.
FeatureSelector is a contribution to integrate the
feature extraction process and a classi®cation al-
gorithm. The aim is to limit the need for a human
expert only to the supervised learning phase. Be-
cause DataEngine is a powerful software tool
which not only contains di�erent methods for soft
classi®cation and clustering but also has the in-
teresting feature to integrate additional function-
alities by way of Plug-Ins, it was used as the
platform for the development of the FeatureS-
elector [22,23].

The problem of feature selection lies in selecting
the best subset Y of n features i.e. Y � fyiji �
1; 2; . . . ; ng from the total set X � fxiji �
1; 2; . . . ; n0g, where n < n0. The development of a

18 V. Ravi, H.-J. Zimmermann / European Journal of Operational Research 123 (2000) 16±28



classi®cation system is frequently accomplished by
separately appraising the feature selection step and
the inherent classi®cation step. However, the
FeatureSelector combines the two steps because it
has the advantage that the selected features are
well suited for the given classi®er. Since the applied
optimizing criteria are then directly related to the
selected classi®cation algorithm, the selected fea-
tures satisfy the mathematical conditions for this
algorithm in each case.

The following measures are used by the Fea-
tureSelector
1. Reclassi®cation error: On the basis of a classi-

®ed learning sample for which unambiguous
class assignment has been performed for each
random sample during the learning phase, a
measure of appraisal has been de®ned by reclas-
sifying the learning sample with the respective
classi®cation algorithm. Thus, at each step the
program calculates how many objects from
the training set can be classi®ed correctly when
the considered feature combination is used. For
this, the class membership of each object is re-
quired. Reclassi®cation rate is de®ned as the ra-
tio of the number of correctly classi®ed samples
to the total number of samples. Reclassi®cation
error is de®ned as (1.0-Reclassi®cation rate).
Thus, a reclassi®cation rate of 1.0 means that
all samples were assessed correctly, which im-
plies that the reclassi®cation error is zero.
Hence, such a feature combination is suitable
for the classi®cation task.

2. In addition to the reclassi®cation error, the
quality criterion `Distance' assesses the certain-
ty with which an object is assigned to a class.
For this, the di�erence between memberships
of that object to a class with highest member-
ship value and the class with the next highest
membership value is calculated. This criterion
is based on the concept that a feature combina-
tion is especially suitable if the arrangement in
the feature space allows as great a distance as
possible to arise between the classes. It is intro-
duced to create one more criterion for ranking
features with the same reclassi®cation rate.

The algorithm for the assessment of the reclassi®-
cation rate is used ®rst. If two di�erent combina-
tions give rise to identical errors, the combination

for which the quality criterion `distance' is greater
is given a better overall assessment. One important
feature of this software is the ¯exibility it provides
to the user regarding the choice of the number of
signi®cant features that are to be selected. Once a
number has been chosen by the user, the Fea-
tureSelector provides various combinations of
features in the increasing order of the reclassi®ca-
tion error. More details of this software can be
found in Strackeljan et al. [22,23].

3. A fuzzy classi®cation method with fuzzy if±then

rules

Following the notation of [10,11], let the pat-
tern space be two-dimensional (i.e. there are two
features in the feature space) and given by the unit
square [0,1] ´ [0,1] for simplicity of notation. For
more details of the extension to the case of higher
dimensions, the reader is referred to [11]. Suppose
that m patterns Xp � �xp1; xp2�; p � 1; 2; . . . ;m, are
given as training patterns from M classes (where
M � m): Class 1 (C1), Class 2 (C2), . . ., Class M
(CM). The problem is to generate fuzzy if±then
rules that divide the pattern space into M disjoint
classes.

As in [10,11], let us suppose that each axis of
the pattern space is partitioned into K fuzzy sub-
sets fAK

1 ; AK
2 ; . . . ;AK

Kg, where AK
i is the ith fuzzy

subset and the superscript K is attached to indicate
the number of fuzzy subsets on each axis (see
Fig. 1). Thus, K denotes the grid size of a fuzzy
partition. Since all the fuzzy rule tables are con-
sidered simultaneously in the distributed repre-
sentation of fuzzy rules [10], it is essential to keep
the subscript K to denote the fuzzy rules corre-
sponding to a fuzzy rule table with K partitions,
K � 2; . . . ; L. A symmetric triangular membership
function is used for AK

i , i � 1; 2; . . . ;K:

lK
i �x� � maxf1ÿ x

�� ÿ aK
i

��=bK ; 0g;
i � 1; 2; . . . ;K;

where

aK
i � �iÿ 1�=�K ÿ 1�; i � 1; 2; . . . ;K;

bK � 1=�K ÿ 1�: �1�
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For classi®cation problems involving M classes
and 2 features, a fuzzy if±then rule corresponding
to K2 fuzzy subspaces has the following structure.

Rule RK
ij : If xp1 is AK

i and xp2 is AK
j then Xp be-

longs to Class CK
ij ,

with CF � CF K
ij ; i � 1; 2; . . . ;K and

j � 1; 2; . . . ;K; �2�
where RK

ij is the label of the fuzzy if±then rule,
AK

i and AK
j are the triangular fuzzy subsets on the

unit interval [0,1], CK
ij is the consequent (i.e. one of

the M classes) and CF K
ij is the grade of uncertainty

of the fuzzy if±then rule. CK
ij and CF K

ij of the fuzzy
if±then rule in Eq. (2) are determined by the fol-
lowing procedures [10,11].

Procedure 1. Generation of Fuzzy if±then rules:
1. Calculate bCT for each class T � 1; 2; . . . ;M as

bCT �
P

Xp2CT lK
i �xp1� � lK

j �xp2�, where bCT is
the sum of compatibility of Xp's in class T to
the fuzzy if±then rule RK

ij in (2) and the symbol
`�' represents the product operator in the origi-
nal works of Ishibuchi et al. [10,11]. However,
in this paper, it stands for one of the following
t-norms/operators viz. (1) product operator, (2)
min operator, (3) c-operator (compensatory
and), (4) fuzzy and and (5) a convex combina-
tion of min and max operators. The same is val-
id for procedure 2 also.

2. Find class X (CX) such that

bCX � maxfbC1; bC2; . . . ; bCMg: �3�
If bCX is not unique in Eq. (3) or all the bCT 's
are zero, the consequent CK

ij of the fuzzy if±then
rule RK

ij can not be determined uniquely. In this
case let CK

ij be u. On the other hand, if bCX is
unique in Eq. (2), then CK

ij is determined as CX
in Eq. (3).

3. If bCX is unique, CF K
ij is determined as follows:

CF K
ij � �bCX ÿ b�

XM

T�1

bCT

,
;

where b �
XM

T�1;T 6�X

bCT=�M ÿ 1�:
�4�

In other words, the consequent CK
ij is determined

as class X (CX) which has the largest sum of
lK

i �xp1� � lK
j �xp2� over the M classes in Eq. (2).

Fuzzy if±then rules with u in the consequent part
are dummy rules that have no e�ect on fuzzy in-
ference for classifying new patterns. If there is no
pattern in the fuzzy subspace AK

i � AK
j , a dummy

rule is generated for this fuzzy subspace because all
the bCT 's become zero in this case. The certainty
factor CF K

ij is speci®ed by Eq. (4). �

Let SK be the set of generated K2 fuzzy if±then
rules given by SK � fRK

ij ji � 1; 2; . . . ;K; j � 1; 2;
. . . ;Kg. That is, SK is the rule set corresponding to

Fig. 1. Labels and indexes of fuzzy if±then rules (a) k� 2, (b)

k� 3 [11].
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the K ´ K fuzzy rule table. In the approach of
distributed fuzzy if±then rules [10,11], multiple
fuzzy if±then rules are used simultaneously. Let
the set of all fuzzy if±then rules corresponding to
K � 2; 3; . . . ; L partitions be SALL which is

SALL � S2 [ S3 [ � � � [ SL

� fRK
ij j i � 1; 2; . . . ;K; j � 1; 2; . . . ;K and

K � 2; 3; . . . ; Lg; �5�

where L is an integer to be speci®ed depending on
the classi®cation problem. By taking K � 2;
3; . . . ; L in Procedure 1 above, 22 + 32 + � � � + L2

fuzzy if±then rules are generated. Let S be a subset
of SALL. The main objective is to ®nd a compact
rule set S with very high classi®cation power by
taking recourse to a combinatorial global optimi-
zation formulation with multiple objective func-
tions. This is described in detail later.

The procedure for the classi®cation of a new
pattern into any of the M classes is presented as
follows in Procedure 2 [10,11].

Procedure 2. Classi®cation of new patterns Xp �
�xp1; xp2�
1. Find aCT for each class T �T � 1; 2; . . . ;M� as

aCT � maxflK
i �xp1� � lK

j �xp2� � CF K
ij jCF K

ij

� CT and RK
ij 2 Sg: �6�

2. Find the X(CX) such that aCX � maxfaC1;
aC2; . . . ; aCMg. If aCX is not unique or all the
aCT 's are zero, then the classi®cation of Xp is re-
jected (i.e. Xp is left as unclassi®able pattern),
else Xp is classi®ed as X(CX).

4. The modi®ed threshold accepting for solving the

multi-objective combinatorial optimization problem

The model of Ishibuchi et al. [11] has been
modi®ed as follows: Firstly, the decision making
part of the rule generation and classi®cation
phases, where the product and the min operators
were used, is modi®ed slightly, in that several other
aggregators have been tried instead. They are: (i)

compensatory and (c-operator), (ii) fuzzy and and
(iii) a convex combination of min and max oper-
ators. Secondly, instead of using a genetic algo-
rithm to solve the multi objective combinatorial
global optimization problem, in this paper, an-
other meta-heuristic viz. a MTA is devised and
adapted.

With procedure 1, the fuzzy if±then rules cor-
responding to K � 2; 3; . . . ; L are generated from
the training patterns Xp, p � 1; 2; . . . ;m. Thus the
rule set SALL is obtained. Now the problem is to
construct a compact rule subset from SALL, which
has a high classi®cation power. Thus, there are two
objectives in the problem: (i) maximize the number
of correctly classi®ed patterns and (ii) minimize the
number of fuzzy if±then rules. These objectives can
be used to formulate a multi objective combina-
torial global optimization problem as follows [11]:

Maximize NCP�S� and Minimize jSj
subject to S � SALL;

where NCP(S) is the number of correctly classi®ed
patterns by S and |S| is the cardinality of S (i.e. the
number of fuzzy if±then rules in S). Assuming that
the unknown preference (utility) function of the
decision maker is modelled by combining his/her
two objectives additively by the weights WNCP and
WS , the compromise solution is determined by us-
ing the following objective function:

Maximize f �S� � WNCP � NCP�S� ÿ WS � jSj
subject to S � SALL:

�7�

It should be kept in mind, however, that the al-
gorithm used is a heuristic and that, depending on
the initial feasible solution the best solutions re-
ported here may not be e�cient.

In [10], it was observed correctly that, in gen-
eral, the classi®catory power of the system is more
important than its compactness. Accordingly, the
weights above are speci®ed as 0 < WS � WNCP. In
this paper, the values of WNCP and WS are taken as
10 and 1, respectively, following [10]. For the sake
of computations, the coding of the rules has been
done as follows. The rule set is represented as an
array, where each component corresponds to one
rule in the N�� 22 � 32 � � � � � L2� possible rules.
Each rule has two main states: (i) rule is a dummy
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rule and (iii) rule is a non-dummy rule. The non-
dummy rules, which ultimately classify the pat-
terns, are again having two states in a given can-
didate solution vector. These are: (i) rule belongs
to S, (ii) rule does not belong to S. These two
states are represented by 1 and ÿ1 respectively.
Since dummy rules have no in¯uence on the fuzzy
inference in classi®cation phase (i.e. Procedure 2),
they should be excluded from S. Hence, they are
represented by zero [11].

In the recent literature, global optimization
techniques such as, Simulated Annealing, Tabu
Search, Genetic Algorithms, Threshold Accepting
are all grouped in one category and called meta-
heuristics [19]. Threshold Accepting, proposed by
Dueck and Scheuer [8], is a variant of the original
simulated annealing algorithm in that the accep-
tance of a new move or solution is determined by a
deterministic criterion rather than a probabilistic
criterion. Dueck and Scheuer [8] showed through
numerical experimentation that threshold accept-
ing is superior to simulated annealing for solving
combinatorial global optimization problems. In
this paper, the threshold accepting algorithm has
been modi®ed and adapted to the problem already
described in the previous section.

4.1. Modi®ed threshold accepting algorithm

The algorithm presented in the following is
written for a minimization problem. Hence, to
maximize the objective function in Eq. (7) we need
to multiply it with ÿ1. The ¯owchart of the algo-
rithm is presented in Fig. 2. Let a[i], i �
1; 2; . . . ;N , be the candidate solution vector, where
N is the total number of possible rules in the sys-
tem. Thus N becomes 90 �� 22 � 32 � � � � � 62� in
the case of two-dimensional feature space with
each feature partitioned into 6 fuzzy subsets. Let m
be the number of classes. Let each component of
a[i] represent a fuzzy rule.

Step (i): Generate an initial feasible solution
randomly using a uniform random number gen-
erator. Here we adopted a biased probability
method, according to which, presence of a rule is
assigned a chance of 0.05 and absence of a rule is
assigned a chance of 0.95. That is,

a�i� � 1; if U P 0:95;
ÿ1; if U < 0:95:

�
�8�

The generation of a solution in a random way is
limited to the initial solution only. Also, 0.95 is
not ®xed for both the problems and for all the
cases. Thus, for some cases, it is taken as a value
in the range [0.9, 0.995]. The best solution ob-
tained after performing many simulations with
di�erent initial solutions, is reported for each case
in Tables 1±4.

Step (ii): Calculate the value of the objective
function in Eq. (7) for this initial feasible solution
and store it in fi. Let itr� 0, thresh� 0.035,
eps� 0.35, thrtol� 10ÿ8, acc� 10-6, old� 9999 and
itrmax� 200.

Step (iii): Start the global iteration:
itr� itr + 1.

Step (iv): Start the inner iteration which is es-
sentially a neighbourhood search. To accomplish
this a deterministic procedure is devised and em-
ployed as follows. Starting from rule 1 (i.e. initially
i� 1) and going up to rule N, check whether each
rule is a dummy rule or not. If a rule is not dum-
my, then its status is changed, i.e. if a non-dummy
rule is present in the candidate rule set, then it is
forced to become absent from the rule set and vice
versa. This results in a neighbouring solution of
the original one. Thus, if a i� � 6� 0; then a i� � � ÿa i� �
Store the new values of a�i� in b�i�; i � 1; 2; . . . ;N :

Step (v): Calculate the value of the objective
function for the candidate solution b�i�; i � 1;
2; . . . ;N , and store it in fj. Find del� fj ÿ fi.

Step (vi):
If (del < thresh) then

fi� fj and
a�i� � b�i�, for all i � 1; 2; . . . ;N :
new� fi and go to Step (vii).

else
new� fi

a�i� � ÿa�i�
i� i + 1 and go to Step (iv).

Step (vii):
if (thresh < thrtol ) then

del 2� (new ÿ old)/old
if(abs(del2)<acc) then report b�i�,
i � 1; 2; . . . ;N , as the global optimal solution
with fj as the global optimum.
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Fig. 2. Flowchart of the MTA algorithm.
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Table 4

Results of example 2 (Leave-one-out technique)

# Partitions Operator

Product Minimum c-operator Fuzzy and Min/max

C.P Sj j C.P Sj j C.P Sj j C.P Sj j C.P Sj j
8 100 3 99.85 2.99 100 3 87.84 6.12 99.56 3.03

7 100 3 100 3 100 3 93.99 3.75 100 3.93

6 100 3 100 3 100 2.99 93.56 3.74 93.56 3.74

5 98.54 2.95 98.68 2.94 98.54 2.95 93.56 3.74 93.56 3.74

4 98.83 2.96 98.83 2.96 98.54 2.95 98.97 2.97 96.07 2.88

3 97.36 2.92 96.93 2.91 96.78 2.89 88.58 3.54 88.29 3.53

Notes 06 c6 1; Min/max indicates a convex combination of Min and Max operators.

In this case, the average number of rules are presented.

Table 3

Results of example 2 (Training data used as test data)

# Partitions Operator

Product Minimum c-operator Fuzzy and Min/max

C.P Sj j C.P Sj j C.P Sj j C.P Sj j C.P Sj j
8 97.8 26 97.66 29 97.8 25 93.85 3 93.99 12

7 97.8 28 97.51 23 97.8 28 93.7 6 93.56 4

6 97.36 24 96.93 21 97.21 23 93.56 3 93.56 4

5 96.78 20 95.75 18 95.9 14 94.58 6 93.56 6

4 95.46 14 95.75 15 94.29 9 94.58 6 94.14 3

3 95.02 11 94.14 6 94.14 6 94.43 6 93.56 5

Note: 06 c6 1; Min/max indicates a convex combination of Min and Max operators.

Table 2

Results of example 1 (Leave-one-out technique)

# Partitions Operator

Product Minimum c-operator Fuzzy and Min/max

C.P Sj j C.P Sj j C.P Sj j C.P Sj j C.P Sj j
5 100 4.71 100 4.71 100 4.71 100 54.3 95.51 52.2

4 100 3 93.26 2.8 93.26 2.8 100 2.96 96.63 2.89

3 99.44 3 99.44 3.36 93.26 3.2 98.87 3.03 98.87 3.31

Notes 06 c6 1; Min/max indicates a convex combination of Min and Max operators.

In this case, the average number of rules are presented.

Table 1

Results of example 1 (Training data used as test data)

# Partitions Operator

Product Minimum c-operator Fuzzy and Min/max

C.P Sj j C.P Sj j C.P Sj j C.P Sj j C.P Sj j
5 100 14 99.44 13 100 16 98.88 65 98.88 42

4 98.88 13 98.88 13 98.88 13 100 11 98.31 15

3 98.88 15 97.75 12 98.88 15 95.51 12 97.75 12

Note: 06 c6 1; Min/max indicates a convex combination of Min and Max operators.

24 V. Ravi, H.-J. Zimmermann / European Journal of Operational Research 123 (2000) 16±28



else
old� new;
thresh� thresh� (1-eps)

Step (viii): if (itr < itrmax) go to step (iii). �

In the above algorithm, thresh is the initial
threshold value, eps is the factor used in the re-
duction of the threshold, thrtol is the prespeci®ed
small value beyond which the threshold is not re-
duced, acc is the prespeci®ed small value used in
the convergence criterion, old is the arbitrarily
speci®ed initial value for the objective function and
itr is the global iteration counter, itrmax is the
maximum number of global iterations. The user
can change the values of the eps, thrtol and acc
which control the speed of convergence of the al-
gorithm and accuracy of the optimal solution. The
values of thresh, acc, old and itrmax are kept
constant at the values speci®ed in step (iii),
whereas, the eps and thrtol are taken as parameters
and their values are changed arbitrarily as is done
in simulated annealing until no non-dominated
solution is obtained anymore.

The inner iterations continue until the status of
all the non-dummy rules is changed, one at a time,
in the candidate solution. Thus, all these combi-
nations constitute the set of neighbourhood solu-
tions for the candidate solution vector. If the
changed status of any rule does not increase the
classi®cation power then its status is reverted back
to the old position. This ensures that only those
rules which increase the classi®cation power are
retained for the next iteration and the ine�ective
rules are dropped.

The modi®cation suggested by the us to the
original threshold accepting algorithm lies in the
manner in which each neighbourhood solution
vector is generated in a deterministic fashion from
the given candidate solution vector. It is described
in Steps (iv) to (vi) in the above algorithm. This is
in contrast to the original threshold accepting al-
gorithm presented in [8], where both the initial
solution and the neighbourhood solution are
chosen either deterministically or randomly.

Further, another variant of the current MTA
algorithm is tested on a few cases which produced
good results. We call this variant `MTA with early
exit'. That is, we make an early exit from the inner

iterations without performing the swapping oper-
ation in Step (vi) on all the non-dummy rules in the
candidate solution vector. That means we do not
test all the possible neighbourhood solutions of a
given candidate solution but only a few of them.
This strategy is analogous to the one in Non-
equilibrium Simulated Annealing [5], where also
the inner iterations are prematurely terminated
before attaining `temperature equilibrium'. This
strategy works well according to [5] and the ex-
perience of the ®rst author [20].

5. Numerical tests and discussion

The data for well known problems in machine
learning area can be freely obtained from the In-
ternet website of University of California at Irvine
[18]. The ®rst illustrative example worked out using
the methodology presented here is the well-known
wine classi®cation problem for which the data and
documentation are available in the Internet [9]. In a
classi®cation context, this is a well posed problem
with `well behaved' class structures. These data are
the results of a chemical analysis of wines grown in
the same region in Italy but derived from three
di�erent cultivars. The analysis determined the
quantities of 13 constituents (attributes) found in
each of the three types of wines. The class distri-
bution for the 178 patterns is as follows: 59 patterns
fall in class 1; 71 patterns fall in class 2 and 48
patterns fall in class 3. All attributes are continuous
and there are no missing values. The data was used
for comparing various classi®ers [1,2].

The second numerical example is also a famous
one concerning the determination of the breast
cancer in humans from Wisconsin University hos-
pital in Madison, USA. This is also freely available
in the Internet [16,17] (available via anonymous ftp
from ics.uci.edu in the directory /pub/machine-
learning-databases/wisconsin-breast-
cancer). Samples arrive periodically as Dr. Wol-
berg reports his clinical cases. The database there-
fore re¯ects this chronological grouping of the
data. There are at present 699 cases or samples or
patterns available whereas in the past usage, only a
dataset of size 369 samples was used. Hence their
results cannot be compared with our results. The 9
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attributes or features which determine whether a
patient is benign or malign are: (i) Clump Thick-
ness, (ii) Uniformity of Cell Size, (iii) Uniformity
of Cell Shape, (iv) Marginal Adhesion, (v) Single
Epithelial Cell Size, (vi) Bare Nuclei, (vii) Bland
Chromatin, (viii) Normal Nucleoli, (ix) Mitoses.
There are some missing values in 16 samples and
hence all those samples were removed completely
from our study. Hence, our study comprises only
683 samples or patterns. The class distribution is
as follows: Benign: 458 (65.5%) Malignant: 241
(34.5%). This data has been used earlier by Man-
gasarian et al. [16,17] and Bennet et al. [3].

In this paper, a software in C has been devel-
oped on a Pentium 100 MHz machine under
Windows 95 platform using a Microsoft Visual
C++ 5.0 compiler to implement the model. The
FeatureSelector has the ¯exibility of selecting dif-
ferent feature combinations once the user selects
the desired number of signi®cant features. The
authors desired to have ®ve signi®cant features for
both the numerical examples considered here.
However, in the Wisconsin breast cancer problem,
the FeatureSelector selected a particular combi-
nation of 3 features which has the least reclassi®-
cation error and hence more classi®cation power
compared to all the combinations of 5 features.

The algorithm is tested in two ways: (i) using
the training data itself as the test data (ii) using the
leave-one-out technique in the testing phase. The
latter method is preferable as there is the danger of
over-®tting in the former method. In each of these
methods, all the feature spaces have been divided
into a maximum of 5 partitions for the wine clas-
si®cation problem and 8 partitions for the Wis-
consin breast cancer problem, respectively. This is
done in order to keep the computational com-
plexity to a reasonable level, as we work with 5
features in the wine classi®cation problem and 3
features in the Wisconsin breast cancer example.
Further, the study has been conducted for 5 cases
each corresponding to di�erent aggregator viz. (1)
product operator, (2) min operator, (3) c-operator
(compensatory and), (4) fuzzy and, and (5) a con-
vex combination of min and max operators, that is,
k max + (1ÿk) min, where 06 k6 1. The optimal
compromise solution obtained in the case of
compensatory operators depended on the level of

compensation i.e. c, k etc. They were chosen such
that the compromise solution is nondominated in
each case. Their values are not presented in the
tables for the sake of brevity.

Results of the wine classi®cation problem (see
Table 1) show that the fuzzy and yielded the best
solution of 100% classi®cation power with just 11
rules when 4 partitions were considered. However,
the product operator performed consistently well
and gave the second best solution of 100% classi-
®cation power with 14 rules, whereas the c-oper-
ator was closely behind giving 100% classi®cation
with 16 rules. Min operator produced a maximum
of 99.44 classi®cation power with 13 rules, in the
case of 5 partitions.

The same example when studied with leave-
one-out technique (see Table 2), produced vastly
di�erent results. When 5 partitions were consid-
ered, the product, min and the c operators yielded
100% classi®cation power with 4.71 rules on the
average. Although fuzzy and also produced 100%
classi®cation power, it took large number of rules
to achieve this. However, when 4 partitions were
used, the best compromise solution (in the table)
of 100% classi®cation power with 2.96 rules on the
average was provided by fuzzy and and the product
operator yielded the next best solution of 100%
classi®cation power and 3 rules on the average.
High classi®cation rates for all operators were
obtained in the case of 3 partitions too.

Ishibuchi et al. [12] reported a solution of 100%
classi®cation power with 8 rules in the wine clas-
si®cation problem. However, su�cient information
was not provided in [12], as to whether this solution
was obtained in the leave-one-out technique or
when the training data is used as test data. Hence,
our results were not compared with those of [12].

Results of the Wisconsin breast cancer problem
(see Table 3) show that the classi®cation power, in
general, increases with the ®neness of the grid or
number of partitions of the fuzzy subspaces. The c-
operator yielded the best solution of 97.8% clas-
si®cation power with 25 rules when 8 partitions
were considered. The product operator came
closely behind with 97.8% classi®cation power and
26 rules when 8 partitions were considered. Min
operator turned out to be the best among the other
three operators.
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When the leave-one-out technique was applied
to the same problem (see Table 4), the results are
as follows. In the case of 6 partitions, 100% clas-
si®cation power with 3 rules on the average was
achieved by the product and min operators whereas
the c-operator produced 100% classi®cation power
with 2.99 rules on the average. In the case of 7
partitions, a solution of 100% classi®cation power
with 3 rules on the average was produced uni-
formly by the product and min and the c operators,
whereas a solution of 100% classi®cation power
with 3.93 rules on the average was produced by the
convex combination of min and max operators.
However, in the case of 8 partitions, 100% classi-
®cation power with 3 rules on the average was
achieved by the product and the c-operators
whereas min operator yielded 99.85% classi®cation
power with 2.99 rules on the average. Convex
combination of min and max operators outper-
formed fuzzy and in most of the cases.

It is further noticed that the original threshold
accepting algorithm was outperformed by the
MTA (algorithm in this paper) in the case of both
the problems studied here.

6. Conclusions

This paper highlights the paramount aspect of
dimensionality reduction of the feature space in
classi®cation problems involving a large number of
dimensions. The FeatureSelector, a software de-
veloped solely for feature extraction has been used
as a pre-processor for the ®rst time in fuzzy rule
based classi®cation problems. A standard fuzzy
rule based classi®cation system is modi®ed and
invoked with most important features extracted by
the FeatureSelector. Further, a MTA has been
used for minimizing the number of rules in the
classi®cation system while guaranteeing high clas-
si®cation power. The number of rules used and the
classi®cation power are taken as the objectives for
this multi objective combinatorial optimization
problem.

The methodology proposed here has been suc-
cessfully demonstrated for the well-known wine
classi®cation problem, which includes 13 feature
variables and the Wisconsin breast cancer problem

which has 9 feature variables. The authors desired
to select 5 most signi®cant feature variables in
both the problems using the software plug-in
FeatureSelector. Results of both examples dem-
onstrate the predominant in¯uence of the type of
aggregator on the classi®cation power of the al-
gorithm. The product operator, the c-operator and
fuzzy and provided consistently good solutions
achieving 100% classi®cation in leave-one-out
testing phase. The number of partitions of the
feature spaces had also in¯uenced the compromise
solutions in both the problems. In general, it was
observed that the ®ner partitions of the feature
spaces led to better classi®cation power accompa-
nied by increased number of rules. The high clas-
si®cation powers obtained for both the problems
when working with less feature variables than the
original number is the signi®cant achievement of
this study and it demonstrates the power of the
FeatureSelector, the strength of the classi®cation
algorithm and the e�cacy of the combinatorial
optimization algorithm, MTA, used in this paper.
Further, the MTA has outperformed the original
threshold accepting algorithm in the case of both
the problems.

Acknowledgements

The ®rst author wishes to thank Deutscher
Akademischer Austauschdienst (DAAD) for pro-
viding him the ®nancial support for this work
through a research fellowship leading to his Ph.D.
degree. The authors also express their gratitude to
Dr. W.H. Wolberg (physician) University of
Wisconsin Hospitals Madison, Wisconsin, USA
and Prof. Olvi Mangasarian (mangasarian@cs.
wisc. edu) who are principal donors of the breast
cancer database to the internet. Thanks are also
due to the anonymous referees whose comments
have improved the presentation of the paper.

References

[1] S. Aeberhard, D. Coomans, O. de Vel, Comparison of

classi®ers in high dimensional settings, Technical report

no. 92-02, Department of Computer Science and Depart-

V. Ravi, H.-J. Zimmermann / European Journal of Operational Research 123 (2000) 16±28 27



ment of Mathematics and Statistics, James Cook Univer-

sity of North Queensland, 1992.

[2] S. Aeberhard, D. Coomans, O. de Vel, The classi®cation

performance of RDA technical report no. 92-01, Depart-

ment of Computer Science and Department of Mathe-

matics and Statistics, James Cook University of North

Queensland, 1992.

[3] K.P. Bennett, O.L. Mangasarian, Robust linear program-

ming discrimination of two linearly inseparable sets,

Optimization Methods and Software 1 (1992) 23±34.

[4] P.S. Bradley, O.L. Mangasarian, W.N. Street, Feature

selection via mathematical programming, INFORMS

Journal on Computing 10 (1998) 209±217.

[5] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo, Nonequi-

librium simulated annealing: A faster approach to combi-

natorial optimization, Industrial Engineering Chemistry

Research 33 (1994) 1908±1918.

[6] C. Chang, Dynamic programming as applied to feature

subset selection in a pattern recognition system, IEEE

Transactions on Systems, Man and Cybernetics 3 (1973)

166±171.

[7] Data Engine 2.0, The User's Manual, MIT GmBH,

Aachen, Germany, 1997.

[8] G. Dueck, T. Scheuer, Threshold accepting: A general

purpose optimization algorithm appearing superior to

simulated annealing, Journal of Computational Physics 90

(1990) 161±175.

[9] M. Forina et al., Wine Recognition Database, 1991.

Available via anonymous ftp from ics.uci.edu in

directory /pub/machine-learning-databases/

wine .

[10] H. Ishibuchi, K. Nozaki, H. Tanaka, Distributed repre-

sentation of fuzzy rules and its application to pattern

classi®cation, Fuzzy Sets and Systems 52 (1992) 21±32.

[11] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka,

Selecting fuzzy if±then rules for classi®cation problems

using genetic algorithms, IEEE Transactions on Fuzzy

Systems 3 (1995) 260±270.

[12] H. Ishibuchi, T. Murata, Minimizing the fuzzy rule base

and maximizing its performance by a multi-objective

genetic algorithm. 6th FUZZ-IEEE, Barcelona, Spain,

1997, pp. 259±264.

[13] H. Ichihashi, T. Shirai, K. Nagasaka, T. Miyoshi, Neuro-

Fuzzy ID3: A method of inducing fuzzy decision trees with

linear programming for maximizing entropy and an

algebraic method for incremental learning, Fuzzy Sets

and Systems 84 (1996) 1±19.

[14] J. Kittler, P.C. Young, A new approach to feature

selection based on the Karhunen±Loeve expansion, Pat-

tern Recognition 5 (1973) 336±352.

[15] B. Kosko, Neural Networks and Fuzzy Systems, Prentice-

Hall., 1992, Englewood Cli�s, NJ.

[16] O.L. Mangasarian, W.H. Wolberg, Cancer diagnosis via

linear programming, SIAM News 23 (1990) 1±18.

[17] O.L. Mangasarian, R. Setiono, W.H. Wolberg, Pattern

recognition via linear programming: Theory and applica-

tion to medical diagnosis, in: T.F. Coleman, Y. Li (Eds.),

Large-scale numerical optimization, SIAM Publications,

Philadelphia, 1990, pp. 22±30.

[18] P.M. Murphy, D.W. Aha, UCI repository of machine

learning data bases, Department of Information and

Computer Science, University of California, Irvine,

(1994) www.ics.uci.edu./mlearn/ML.

[19] I.H. Osman, J.P. Kelly, Meta-heuristics: An overview, in:

I.H. Osman, J.P. Kelly (Eds.), Meta-Heuristics: Theory

and Applications, Kluwer Academic Publishers, Boston,

MA, 1996, pp. 1±21.

[20] V. Ravi, B.S.N. Murty, P.J. Reddy, Nonequilibrium

simulated annealing algorithm applied to reliability opti-

mization of complex systems, IEEE Transactions on

Reliability 46 (1997) 233±239.

[21] V. Ravi, P.J. Reddy, H.J. Zimmermann, Fuzzy rule base

generation and its minimization via modi®ed threshold

accepting, Fuzzy Sets and Systems (forthcoming).

[22] J. Strackeljan, D. Behr, F. Detro, Feature Selector: A

plug-in for feature selection with DataEngine, 1st Interna-

tional Data Analysis Symposium, Aachen, Germany,

1997.

[23] J. Strackeljan, D. Behr, T. Kocher, Fuzzy pattern recog-

nition for automatic detection of di�erent teeth substanc-

es, Fuzzy Sets and Systems 85 (1997) 275±286.

[24] WINROSA, Manual, MIT GmbH, Aachen, Germany,

1997.

[25] Y. Yuan, M.J. Shaw, Induction of fuzzy decision trees,

Fuzzy Sets and Systems 69 (1995) 125±139.

[26] Y. Yuan, H. Zhuang, A genetic algorithm for generating

fuzzy classi®cation rules, Fuzzy Sets and Systems 84 (1996)

1±19.

28 V. Ravi, H.-J. Zimmermann / European Journal of Operational Research 123 (2000) 16±28


